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Fluorescence  
Light 

Secondary 
Particles 

Hybrid detector 

Surface Detector (SD) 
1600 water Cherenkov tanks 
Area of 3000 km2 

Fluorescence Detector (FD)  
4 building with 6 telescopes each 
Telescope f.o.v. 30 x 30 deg 

SD & FD  
Enhancements 



Auger observables at a glance 

  Longitudinal development 
 

• EM profile (FD) 
• Muon Production profile (SD) 

– Time structure of muon dominated 
regions 
 
 

  Lateral ground distribution 
 

• All particles (total signal) 
• Pure muonic 

– Inclined showers 

• EM/Mu separation 
– Time structure 
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p-Air cross 
section 
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Method 

• Continuous reparameterization of 
cross section in MC 
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• Simulation of Xmax distribution  
• different rescalings 
• different models 
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• Λη ↔ σp-Air conversion 



Results 

6 
See more details in PRL 2012 and ICRC2011 
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Possible He contamination is the 
 main source of systematic  
uncertainty. 25% He maximum contamination 
assumed for sys. uncertainties 



Muon production in air showers 

• Analysis of temporal structure of SD signals 

• Analysis of signal size of inclined showers 

• Analysis of signal size of hybrid events 
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Temporal structure of SD signals 
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1. Smoothing 
 
Low pass filter-> EM component 
After Substraction of EM-> Muons 

2. Multivariate Analysis 
 
Variables sensitive to large relative 
fluctuations and short signals. 
 
 
 
 
 
Conversion to muon fraction by: 
 
 
 
Where a,b,c,d,e were calculated using 
simulations 
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See more details ICRC2013 



Results 
E=[1018.98 ,1019.02] eV      

r=[950,1050] m 
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Fit the muon density in stations 
 
 
 
where N19  free parameter 
And ρµ,19 (x,y)  is fixed, corresponding to 
proton QGSJetII-03 at 1019 eV 
 
 
Ratio of the total number of muons Nµ to  
Nµ,19  (proton QGSJetII-03 at 1019 eV) 
 
 
Correspondence (<5% bias correction) 
 
 

Inclined hybrid events 
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),(19,19 yxN   

19,/  NNR 

RN 19

62<Θ<80 deg 



Results 
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See more details in ICRC2013 



Hybrid events 

E=[1018.8 ,1019.2] eV 
 
 
• Find simulations which 

match FD profile, for each 
event 

• Compare SD signals for 
simulations and data 

• Rescale muon content until 
simulated SD best match 
data 
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Results 
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Mixed composition  
reproduces  Xmax-
distribution of data 



Indentifying the discrepancy 

• RE: Energy rescaling. Rescales EM and 
muonic components 

• R µ: Muonic rescaling.  

• Find RE  & R µ for best overall fit 
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Results 
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EM profile 
 vs 

 Muon Production profile 

• ~1-2 hadr. generations after the 1st interaction 
–  >90% energy is in the EM channel, 

–  EM cascade practically decoupled from the hadronic 
cascade  

• MPD profile: reflects development of the hadronic 
cascade 
– All hadr. generations contribute 

• ΔXµ & ΔX test different hadronic properties 
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lnA compatibility 
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Conversion of Xµ
max  & Xmax  into lnA 

using the models unveals  problems 
(opportunities!) for the models.  

A difference between the models, LHC-
EPOS makes a better treatement of 
diffraction rapidity gaps. 
 
QGSJetII.04 could be missing additional and 
relevant effects that compensate Xµ

max 



Conclusions 

• σp-Air for particle production measured at √s=57 TeV 
– Compatible with most models. 

– Systematics: up to 25% He contamination.  

• Updated measurements of muon production 
new E scale, method’s improvements and new hadronic models, 20% more muons.  

– Xmax incompatible with iron dominated up to 2x1019 eV -> 
muon content is too  large 

– Absolute value similar to iron predicions, but angular 
dependence close to proton at 1019 eV 

– Muon rescaling factor 1.3-1.6 

– No need for E rescaling  

• Muon Production Depth provides new constraints in 
hadronic models 
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BACK UP SLIDES 
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